Lesson 9. Velocity and Acceleration

1 Overview

• How can we find the velocity and acceleration of an object in 3D space?

2 Definitions

- Let $\vec{r}(t) = \langle f(t), g(t), h(t) \rangle$ be the position vector an object's position at time t
 - For example, at time t = 2, the object is at point
- The **average velocity** of the object over the time interval $[t_1, t_2]$ is
 - Change in position (displacement) per unit time
- The **velocity** of the object at time *t* is
 - Limit of average velocity as the interval length approaches 0
- The **speed** of the object at time *t* is
- The **acceleration** of the object at time *t* is
 - How does the velocity change?

Example 1. Find the velocity, acceleration, and speed of a helicopter at time *t* with position vector $\vec{r}(t) = \langle e^t, te^t, \ln t \rangle$. What about when t = 2?

Example 2. An airplane starts at an initial position $\vec{r}(0) = \langle 0, 1, 0 \rangle$ with velocity $\vec{v}(0) = \langle -1, 1, 0 \rangle$. Its acceleration is $\vec{a}(t) = \langle 6t, 4t, 1 \rangle$. Find its velocity and position at time *t*.

Hint. If you have f'(t), then what does $\int f'(t) dt$ give you?

• In general, we can recover velocity when acceleration is known:

• We can also recover position when velocity is known:

Example 3. An airplane moves in space according to the vector function $\vec{r}(t) = \langle t^2 - 4t, t^2, 4t \rangle$. When is the speed a minimum?